跳至主要内容

The targeted antioxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue

Author:Esther M. Gottwald, Michael Duss, Milica Bugarski, Dominik Haenni, Claus D. Schuh, Ehud M. Landau, Andrew M. Hall   《Physiological Reports》


ABSTRACTS
Kidney proximal tubules (PTs) contain a high density of mitochondria, which are required to generate ATP to power solute transport. Mitochondrial dysfunction is implicated in the pathogenesis of numerous kidney diseases. Damaged mitochondria are thought to produce excess reactive oxygen species (ROS), which can lead to oxidative stress and activation of cell death pathways. MitoQ is a mitochondrial targeted antioxidant that has shown promise in preclinical models of renal diseases. However, recent studies in nonkidney cells have suggested that MitoQ might also have adverse effects. Here, using a live imaging approach, and both in vitro and ex vivo models, we show that MitoQ induces rapid swelling and depolarization of mitochondria in PT cells, but these effects were not observed with SS31, another targeted antioxidant. MitoQ consists of a lipophilic cation (Tetraphenylphosphonium [TPP]) joined to an antioxidant component (quinone) by a 10carbon alkyl chain, which is thought to insert into the inner mitochondrial membrane (IMM). We found that mitochondrial swelling and depolarization was also induced by dodecyltriphenylphosphomium (DTPP), which consists of TPP and the alkyl chain, but not by TPP alone. Surprisingly, MitoQinduced mitochondrial swelling occurred in the absence of a decrease in oxygen consumption rate. We also found that DTPP directly increased the permeability of artificial liposomes with a cardiolipin content similar to that of the IMM. In summary, MitoQ causes mitochondrial swelling and depolarization in PT cells by a mechanism unrelated to antioxidant activity, most likely because of increased IMM permeability due to insertion of the alkyl chain.
SCREENSHOT

RELATED PRODUCTS
 SS31
CHAINING
https://physoc.onlinelibrary.wiley.com/doi/abs/10.14814/phy2.13667

评论

此博客中的热门博文

Identification and Inhibitory Mechanism of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Bovine Hemoglobin

Author:Ying Wang, Yiqun Jiang, Yongguang Yin, Jiyun Liu,  Long Ding, Jingbo Liu, Ting Zhang     《The Protein Journal》 ABSTRACTS Angiotensin I-converting enzyme (ACE, EC.3.4.15.1) inhibitory peptide is an efficacious therapy for hypertension. In this study, four dipeptides, TY, FD, FL and FG, were identified from the desalted fraction of bovine hemoglobin hydrolysate, obtained by in vitro simulated gastrointestinal digestion, via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The IC 50   value of TY and FL are 96.43?±?6.17 and 290.66?±?57.92  μM, respectively. The result of molecular docking indicated that TY occupied the ACE subsite S1 and S1′ with a lowest estimated binding energy of ?9.96  Kcal/mol, while FL occupied the subsite S5 with a lowest estimated binding energy of ?9.37  Kcal/mol. The subsite S1′ and S2′ are closer to the ACE active center (Zn 2+ ) than S5, and the lowest estimated binding energy of TY is lower ...

Mitochondria Targeted Peptide Attenuates Mitochondrial Dysfunction, Controls Inflammation and Protects Against Spinal Cord Injury-Induced Lung Injury

文献作者:Zhu L.-L. · Li M.-Q. · He F. · Zhou S.-B. · Jiang W.     《Cellular Physiology and Biochemistry》 ABSTRACTS Background/Aims:   Spinal cord injury (SCI) is a common and devastating disease, which results in systemic inflammatory response syndrome and secondary lung injury. Mitochondrial dysfunction and inflammation are closely related to lung injury in diverse disease models. No studies have demonstrated the effects of mitochondrial targeted peptide SS-31 in a mouse model of SCI-induced lung injury.  Methods:   Immediately after injury, mice in the treatment groups received a daily, single-dose intraperitoneal injection of SS-31 and for the next 2 days. The sham and SCI groups also received a daily single dose of vehicle (DMSO and 0.9% NaCl, 1: 3). The lung tissue of mice was examined after SCI, and tissue damage, apoptosis, inflammation, and mitochondrial dysfunction were recorded.  Results:   SS-31 treatment attenuated lung edema ...

The therapeutic effect of anti-CD52 treatment in murine experimental autoimmune encephalomyelitis is associated with altered IL-33 and ST2 expression levels

文献作者:Mark Barbour, Rachel Wood, Shehla U.Hridi, Chelsey Wilson, Grant McKay, Trevor J.Bushell, Hui-Rong Jiang   《Journal of Neuroimmunology》 ABSTRACTS Experimental autoimmune encephalomyelitis  (EAE) mice were administered with murine anti-CD52  antibody  to investigate its therapeutic effect and whether the treatment modulates IL-33 and ST2 expression. EAE severity and  central nervous system  (CNS) inflammation were reduced following the treatment, which was accompanied by peripheral  T and B lymphocyte  depletion and reduced production of various  cytokines  including IL-33, while sST2 was increased. In spinal cords of EAE mice, while the number of IL-33 +  cells remained unchanged, the extracellular level of IL-33 protein was significantly reduced in anti-CD52 antibody treated mice compared with controls. Furthermore the number of ST2 +  cells in the spinal cord of treated EAE mice was  downregulated ...