跳至主要内容

The targeted antioxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue

Author:Esther M. Gottwald, Michael Duss, Milica Bugarski, Dominik Haenni, Claus D. Schuh, Ehud M. Landau, Andrew M. Hall   《Physiological Reports》


ABSTRACTS
Kidney proximal tubules (PTs) contain a high density of mitochondria, which are required to generate ATP to power solute transport. Mitochondrial dysfunction is implicated in the pathogenesis of numerous kidney diseases. Damaged mitochondria are thought to produce excess reactive oxygen species (ROS), which can lead to oxidative stress and activation of cell death pathways. MitoQ is a mitochondrial targeted antioxidant that has shown promise in preclinical models of renal diseases. However, recent studies in nonkidney cells have suggested that MitoQ might also have adverse effects. Here, using a live imaging approach, and both in vitro and ex vivo models, we show that MitoQ induces rapid swelling and depolarization of mitochondria in PT cells, but these effects were not observed with SS31, another targeted antioxidant. MitoQ consists of a lipophilic cation (Tetraphenylphosphonium [TPP]) joined to an antioxidant component (quinone) by a 10carbon alkyl chain, which is thought to insert into the inner mitochondrial membrane (IMM). We found that mitochondrial swelling and depolarization was also induced by dodecyltriphenylphosphomium (DTPP), which consists of TPP and the alkyl chain, but not by TPP alone. Surprisingly, MitoQinduced mitochondrial swelling occurred in the absence of a decrease in oxygen consumption rate. We also found that DTPP directly increased the permeability of artificial liposomes with a cardiolipin content similar to that of the IMM. In summary, MitoQ causes mitochondrial swelling and depolarization in PT cells by a mechanism unrelated to antioxidant activity, most likely because of increased IMM permeability due to insertion of the alkyl chain.
SCREENSHOT

RELATED PRODUCTS
 SS31
CHAINING
https://physoc.onlinelibrary.wiley.com/doi/abs/10.14814/phy2.13667

评论

此博客中的热门博文

Image-guided stem cells with functionalized self-assembling peptide nanofibers for treatment of acute myocardial infarction in a mouse model

文献作者:Xiao Li, Ying-Ying Chen, Xiu-Mei Wang, Kai Gao, Yun-Zhou Gao, Jian Cao, Zhuo-Li Zhang, Jing Lei, Zheng-Yu Jin, and Yi-Ning Wang     《American Journal of Translational Research》 ABSTRACTS Aim: To investigate the survival of bone marrow mesenchymal stem cells (BMSCs) and the therapeutic effect for acute myocardial infarction (AMI) after co-transplantation with the functionalized self-assembling peptide nanofiber RAD/PRG or RAD/KLT. Methods: AMI of balb/c mice was induced. Mice were randomly divided into four groups, and received treatment of phosphate buffered saline (PBS) (Group A), GFP/Fluc-BMSCs (Group B), GFP/Fluc-BMSCs + RAD/PRG (Group C), and GFP/Fluc-BMSCs + RAD/KLT (Group D), respectively. Bioluminescence imaging (BLI) was performed on day 1 (d-1), d-4, d-7, d-10, and d-13 after transplantation. Magnetic resonance imaging (MRI) was performed at baseline (d-4 before transplantation) and d-29 after treatment. Mice were euthanized on d-29 following tr...

Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy

Author:Xiang-long Tang, Jun Wu, Ben-lan Lin, Sheng Cui, Hong-mei Liu, Ru-tong Yu, Xiao-dong Shen, Ting-wei Wang, Wei Xia     《Acta Biomaterialia》 ABSTRACTS Photodynamic therapy (PDT) has increasingly become an efficient and attractive cancer treatment modality based on reactive oxygen species (ROS) that can induce tumor death after  irradiation   with ultraviolet or visible light. Herein, to overcome the limited tissue penetration in traditional PDT, a novel near-infrared (NIR) light-activated NaScF4: 40% Yb, 2% Er@CaF2  upconversion  nanoparticle   (rUCNP) is successfully designed and synthesized.  Chlorin   e6, a  photosensitizer   and a chelating agent for Mn2+, is loaded into  human serum albumin   (HSA) that further conjugates onto rUCNPs. To increase the ability to target glioma tumor, an acyclic  Arg–Gly–Asp peptide   (cRGDyK) is linked to rUCNPs@HSA(Ce6-Mn). This nanoplatform enables e...

Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists

Author:Martyna Szpakowska, Max Meyrath, Nathan Reynders,  Manuel Counson, Julien Hanson, Jan Steyaert, Andy Chevigné     《Biochemical Pharmacology》 ABSTRACTS The atypical chemokine receptor ACKR3/CXCR7 plays crucial roles in numerous physiological processes but also in viral infection and cancer. ACKR3 shows strong propensity for activation and, unlike classical chemokine receptors, can respond to chemokines from both the CXC and CC families as well as to the endogenous peptides BAM22 and adrenomedullin. Moreover, despite belonging to the G protein coupled receptor family, its function appears to be mainly dependent on β-arrestin. ACKR3 has also been shown to continuously cycle between the plasma membrane and the endosomal compartments, suggesting a possible role as a scavenging receptor. So far, the molecular basis accounting for these atypical binding and signalling properties remains elusive. Noteworthy, ACKR3 extracellular domains bear three  di...