跳至主要内容

Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice

Author:Baozhen Zhang, Lunbo Tan, Yan Yu, Baobei Wang, Zhilong Chen, Jinyu Han, Mengxia Li, Jie Chen, Tianxia Xiao, Balamurali K Ambati, Lintao Cai, Qing Yang, Nihar R Nayak, Jian Zhang, Xiujun Fan   《Theranostics》


ABSTRACTS
Rationale: The availability of therapeutics to treat pregnancy complications is severely lacking, mainly due to the risk of harm to the fetus. In placental malaria, Plasmodium falciparum-infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) on the surfaces of trophoblasts. Based on this principle, we have developed a method for targeted delivery of payloads to the placenta using a synthetic placental CSA-binding peptide (plCSA-BP) derived from VAR2CSA, a CSA-binding protein expressed on IEs.
Methods: A biotinylated plCSA-BP was used to examine the specificity of plCSA-BP binding to mouse and human placental tissue in tissue sections in vitro. Different nanoparticles, including plCSA-BP-conjugated nanoparticles loaded with indocyanine green (plCSA-INPs) or methotrexate (plCSA-MNPs), were administered intravenously to pregnant mice to test their efficiency at drug delivery to the placenta in vivo. The tissue distribution and localization of the plCSA-INPs were monitored in live animals using an IVIS imaging system. The effect of plCSA-MNPs on fetal and placental development and pregnancy outcome were examined using a small-animal high-frequency ultrasound (HFUS) imaging system, and the concentrations of methotrexate in fetal and placental tissues were measured using high-performance liquid chromatography (HPLC).
Results: plCSA-BP binds specifically to trophoblasts and not to other cell types in the placenta or to CSA-expressing cells in other tissues. Moreover, we found that intravenously administered plCSA-INPs accumulate in the mouse placenta, and ex vivo analysis of the fetuses and placentas confirmed placenta-specific delivery of these nanoparticles. We also demonstrate successful delivery of methotrexate specifically to placental cells by plCSA-BP-conjugated nanoparticles, resulting in dramatic impairment of placental and fetal development. Importantly, plCSA-MNPs treatment had no apparent adverse effects on maternal tissues.
Conclusion: These results demonstrate that plCSA-BP-guided nanoparticles could be used for the targeted delivery of payloads to the placenta and serve as a novel placenta-specific drug delivery option.
KEY WORDS
trophoblast, chondroitin sulfate A, placental CSA binding peptide, nanoparticles
SCREENSHOT

RELATED PRODUCTS
Placental CSA-binding peptide (plCSA-BP, EDVKDINFDTKEKFLAGCLIVSFHEGKC) and N-terminal α-amino-biotinylated plCSA-BP (biotin-plCSA-BP) were purchased from ChinaPeptides Co.,Ltd. (Shanghai, China).
CHAINING
http://www.thno.org/v08p2765.htm

评论

此博客中的热门博文

The Catalytically Inactive Mutation of the Ubiquitin-Conjugating Enzyme CDC34 Affects its Stability and Cell Proliferation

Author:Xun Liu, Yang Zhang, Zhanhong Hu, Qian Li, Lu Yang,  Guoqiang Xu     《The Protein Journal》 ABSTRACTS The ubiquitin proteasome system (UPS) plays important roles in the regulation of protein stability, localization, and activity. A myriad of studies have focused on the functions of ubiquitin ligases E3s and deubiquitinating enzymes DUBs due to their specificity in the recognition of downstream substrates. However, the roles of the most ubiquitin-conjugating enzymes E2s are not completely understood except that they transport the activated ubiquitin and form E2–E3 protein complexes. Ubiquitin-conjugating enzyme CDC34 can promote the degradation of downstream targets through the UPS whereas its non-catalytic functions are still elusive. Here, we find that mutation of the catalytically active cysteine to serine (C93S) results in the reduced ubiquitination, increased stability, and attenuated degradation rate of CDC34. Through semi-quantitative proteom...

Identification and Inhibitory Mechanism of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Bovine Hemoglobin

Author:Ying Wang, Yiqun Jiang, Yongguang Yin, Jiyun Liu,  Long Ding, Jingbo Liu, Ting Zhang     《The Protein Journal》 ABSTRACTS Angiotensin I-converting enzyme (ACE, EC.3.4.15.1) inhibitory peptide is an efficacious therapy for hypertension. In this study, four dipeptides, TY, FD, FL and FG, were identified from the desalted fraction of bovine hemoglobin hydrolysate, obtained by in vitro simulated gastrointestinal digestion, via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The IC 50   value of TY and FL are 96.43?±?6.17 and 290.66?±?57.92  μM, respectively. The result of molecular docking indicated that TY occupied the ACE subsite S1 and S1′ with a lowest estimated binding energy of ?9.96  Kcal/mol, while FL occupied the subsite S5 with a lowest estimated binding energy of ?9.37  Kcal/mol. The subsite S1′ and S2′ are closer to the ACE active center (Zn 2+ ) than S5, and the lowest estimated binding energy of TY is lower ...

Preparation of an antimicrobial surface by direct assembly of antimicrobial peptide with its surface binding activity

Author:Junjian Chen, Yuchen Zhu, Yancheng Song, Lin Wang,  Jiezhao Zhan, Jingcai He, Jian Zheng, Chunting Zhong, Xuetao Shi, Sa Liu, Li Ren and Yingjun Wang     《Journal of Materials Chemistry B》 ABSTRACTS Antimicrobial peptides (AMPs) are a broad prospect for clinical application against bacterial infections of biomaterials. However, a bottleneck exists as there is a lack of simple technology to prepare AMPs on biomaterials with sufficient activity, as the activity of AMP is dependent on the correct orientation on the biomaterial. In the present study, based on the conventional AMP (Tet213: KRWWKWWRRC) and surface binding peptide (SKHKGGKHKGGKHKG), we designed an Anchor-AMP that could be directly assembled onto the surface of the biomaterial and also showed excellent antimicrobial activity. By characterizing the surface using a quartz crystal microbalance with dissipation (QCM-D), contact angle, atom force microscopy (AFM) and X-ray photoelectron spectr...