跳至主要内容

Mixing Assisted “Hot Spots” Occupying SERS Strategy for Highly Sensitive In Situ Study

文献作者:Hui Lu, Li Zhu , Chuanlong Zhang, Kexiang Chen, Yiping Cui   《Analytical chemistry》


ABSTRACTS

To solve the problem that analyte molecules cannot easily enter “hot spots” on a conventional solid SERS substrate, we developed a mixing-assisted “hot spots” occupying (MAHSO) SERS strategy to improve utilization of “hot spots”. Compared with the conventional substrate, the MAHSO substrate enhances the sensitivity of SERS measurement by thousands of times. The MAHSO substrate possesses excellent properties of high enhancement, high uniformity, and long-term stability because the MAHSO substrate is integrated inside an ultrafast microfluidic mixer. The mixer makes analytes and metal colloid homogeneously mixed, and analytes are naturally located in “hot spots”, the gaps between adjacent NPs, during the process that NPs deposit on the channel wall. As a multi-inlet device, the MAHSO chip offers a convenient in situ method to study environmental effects on analytes or molecular interactions by flexibly regulating fluid in microchannels and monitoring responses of analytes by SERS spectra. Because all experiments are conducted in aqueous environments, which is similar to the physiological conditions, the MAHSO chip is especially suitable to be applied to study biomolecules. Using this strategy, different conformational changes of the wild type and mutant G150D of protein PMP22-TM4 depending on environmental pH have been observed in situ and analyzed. As a lab-on-a-chip (LoC) device, the MAHSO SERS chip will benefit the field of molecular dynamics, as well as molecule–molecule or molecule–surface interactions in the future.
SCREENSHOT

RELATED PRODUCTS
short-peptide DGEA
CHAINING
https://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b04929
Number of Residues:4
1-Letter Code:DGEA
3-Letter Code:Asp-Gly-Glu-Ala

Molecular weight (Mr):390.35 g/mol
Isoelectric point:3.0
Net charge at pH 7.0:-2.0
Average hydrophilicity:1.4
Ratio of hydrophilic residues / total number of residues:50 %

评论

此博客中的热门博文

The Catalytically Inactive Mutation of the Ubiquitin-Conjugating Enzyme CDC34 Affects its Stability and Cell Proliferation

Author:Xun Liu, Yang Zhang, Zhanhong Hu, Qian Li, Lu Yang,  Guoqiang Xu     《The Protein Journal》 ABSTRACTS The ubiquitin proteasome system (UPS) plays important roles in the regulation of protein stability, localization, and activity. A myriad of studies have focused on the functions of ubiquitin ligases E3s and deubiquitinating enzymes DUBs due to their specificity in the recognition of downstream substrates. However, the roles of the most ubiquitin-conjugating enzymes E2s are not completely understood except that they transport the activated ubiquitin and form E2–E3 protein complexes. Ubiquitin-conjugating enzyme CDC34 can promote the degradation of downstream targets through the UPS whereas its non-catalytic functions are still elusive. Here, we find that mutation of the catalytically active cysteine to serine (C93S) results in the reduced ubiquitination, increased stability, and attenuated degradation rate of CDC34. Through semi-quantitative proteom...

Identification and Inhibitory Mechanism of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Bovine Hemoglobin

Author:Ying Wang, Yiqun Jiang, Yongguang Yin, Jiyun Liu,  Long Ding, Jingbo Liu, Ting Zhang     《The Protein Journal》 ABSTRACTS Angiotensin I-converting enzyme (ACE, EC.3.4.15.1) inhibitory peptide is an efficacious therapy for hypertension. In this study, four dipeptides, TY, FD, FL and FG, were identified from the desalted fraction of bovine hemoglobin hydrolysate, obtained by in vitro simulated gastrointestinal digestion, via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The IC 50   value of TY and FL are 96.43?±?6.17 and 290.66?±?57.92  μM, respectively. The result of molecular docking indicated that TY occupied the ACE subsite S1 and S1′ with a lowest estimated binding energy of ?9.96  Kcal/mol, while FL occupied the subsite S5 with a lowest estimated binding energy of ?9.37  Kcal/mol. The subsite S1′ and S2′ are closer to the ACE active center (Zn 2+ ) than S5, and the lowest estimated binding energy of TY is lower ...

Preparation of an antimicrobial surface by direct assembly of antimicrobial peptide with its surface binding activity

Author:Junjian Chen, Yuchen Zhu, Yancheng Song, Lin Wang,  Jiezhao Zhan, Jingcai He, Jian Zheng, Chunting Zhong, Xuetao Shi, Sa Liu, Li Ren and Yingjun Wang     《Journal of Materials Chemistry B》 ABSTRACTS Antimicrobial peptides (AMPs) are a broad prospect for clinical application against bacterial infections of biomaterials. However, a bottleneck exists as there is a lack of simple technology to prepare AMPs on biomaterials with sufficient activity, as the activity of AMP is dependent on the correct orientation on the biomaterial. In the present study, based on the conventional AMP (Tet213: KRWWKWWRRC) and surface binding peptide (SKHKGGKHKGGKHKG), we designed an Anchor-AMP that could be directly assembled onto the surface of the biomaterial and also showed excellent antimicrobial activity. By characterizing the surface using a quartz crystal microbalance with dissipation (QCM-D), contact angle, atom force microscopy (AFM) and X-ray photoelectron spectr...