跳至主要内容

Mitochondrial protective mechanism of simvastatin protects against amyloid β peptide-induced injury in SH-SY5Y cells

Author:Yunzi Li, Qian Liu, Jing Sun, Jin Wang, Xinfeng Liu, Jing Gao   《International Journal of Molecular Medicine》


ABSTRACTS
Mitochondrial dysfunction is implicated in the pathology of neuronal damage during Alzheimer's disease (AD). Previous studies suggest that simvastatin (SV) ameliorates amyloid β (Aβ)?mediated cognitive impairment in AD patients and transgenic mice; however, the mechanisms remain unknown. To investigate the potential mechanisms by which SV protects against AD neurotoxicity, the present study used a series of cellular and molecular assays to analyze the effects of SV in an in vitro model of Aβ1?42-induced injury. The results demonstrated that SV protected against Aβ1?42?induced SH?SY5Y cell injury by inhibiting the release of cytochrome c from the mitochondria to the cytoplasm, and reducing the production of intracellular reactive oxygen species. In addition, SV downregulated cleaved?caspase?3 protein levels, increased the ratio of B cell lymphoma 2 (Bcl-2) to Bcl-2-associated X protein, and increased the protein levels of peroxisome proliferator-activated receptor γ coactivator-1α in the Aβ1?42?treated cells. Furthermore, SV increased the mitochondrial membrane potential and adenosine triphosphate levels, and enhanced the cell respiratory function and mitochondrial mass of the cells. In conclusion, the present study revealed that SV protected SH?SY5Y cells against Aβ1?42-induced injury through regulating the mitochondrial apoptosis pathway and mitochondrial function.
SCREENSHOT

RELATED PRODUCTS
Aβ1-42
CHAINING
https://www.spandidos-publications.com/ijmm/41/5/2997?text=fulltext

评论

此博客中的热门博文

Image-guided stem cells with functionalized self-assembling peptide nanofibers for treatment of acute myocardial infarction in a mouse model

文献作者:Xiao Li, Ying-Ying Chen, Xiu-Mei Wang, Kai Gao, Yun-Zhou Gao, Jian Cao, Zhuo-Li Zhang, Jing Lei, Zheng-Yu Jin, and Yi-Ning Wang     《American Journal of Translational Research》 ABSTRACTS Aim: To investigate the survival of bone marrow mesenchymal stem cells (BMSCs) and the therapeutic effect for acute myocardial infarction (AMI) after co-transplantation with the functionalized self-assembling peptide nanofiber RAD/PRG or RAD/KLT. Methods: AMI of balb/c mice was induced. Mice were randomly divided into four groups, and received treatment of phosphate buffered saline (PBS) (Group A), GFP/Fluc-BMSCs (Group B), GFP/Fluc-BMSCs + RAD/PRG (Group C), and GFP/Fluc-BMSCs + RAD/KLT (Group D), respectively. Bioluminescence imaging (BLI) was performed on day 1 (d-1), d-4, d-7, d-10, and d-13 after transplantation. Magnetic resonance imaging (MRI) was performed at baseline (d-4 before transplantation) and d-29 after treatment. Mice were euthanized on d-29 following tr...

The therapeutic effect of anti-CD52 treatment in murine experimental autoimmune encephalomyelitis is associated with altered IL-33 and ST2 expression levels

文献作者:Mark Barbour, Rachel Wood, Shehla U.Hridi, Chelsey Wilson, Grant McKay, Trevor J.Bushell, Hui-Rong Jiang   《Journal of Neuroimmunology》 ABSTRACTS Experimental autoimmune encephalomyelitis  (EAE) mice were administered with murine anti-CD52  antibody  to investigate its therapeutic effect and whether the treatment modulates IL-33 and ST2 expression. EAE severity and  central nervous system  (CNS) inflammation were reduced following the treatment, which was accompanied by peripheral  T and B lymphocyte  depletion and reduced production of various  cytokines  including IL-33, while sST2 was increased. In spinal cords of EAE mice, while the number of IL-33 +  cells remained unchanged, the extracellular level of IL-33 protein was significantly reduced in anti-CD52 antibody treated mice compared with controls. Furthermore the number of ST2 +  cells in the spinal cord of treated EAE mice was  downregulated ...

Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy

Author:Xiang-long Tang, Jun Wu, Ben-lan Lin, Sheng Cui, Hong-mei Liu, Ru-tong Yu, Xiao-dong Shen, Ting-wei Wang, Wei Xia     《Acta Biomaterialia》 ABSTRACTS Photodynamic therapy (PDT) has increasingly become an efficient and attractive cancer treatment modality based on reactive oxygen species (ROS) that can induce tumor death after  irradiation   with ultraviolet or visible light. Herein, to overcome the limited tissue penetration in traditional PDT, a novel near-infrared (NIR) light-activated NaScF4: 40% Yb, 2% Er@CaF2  upconversion  nanoparticle   (rUCNP) is successfully designed and synthesized.  Chlorin   e6, a  photosensitizer   and a chelating agent for Mn2+, is loaded into  human serum albumin   (HSA) that further conjugates onto rUCNPs. To increase the ability to target glioma tumor, an acyclic  Arg–Gly–Asp peptide   (cRGDyK) is linked to rUCNPs@HSA(Ce6-Mn). This nanoplatform enables e...