跳至主要内容

Amphiphilic dendrimer engineered nanocarrier systems for co-delivery of siRNA and paclitaxel to matrix metalloproteinase-rich tumors for synergistic therapy

Author:Xin Li, A-ning Sun, Yu-jie Liu, Wen-jie Zhang, Ning Pang, Shi-xuan Cheng & Xian-rong Qi   《NPG asia materials》


ABSTRACTS
Combinations of chemotherapeutics with small interfering RNA (siRNA) can incorporate the advantages of their different mechanisms to exert a synergetic effect. A safe and effective vehicle for simultaneous delivery of the components to tumor cells is a prerequisite for obtaining the optimum effect. We developed an amphiphilic dendrimer engineered nanocarrier system (ADENS) for co-delivering paclitaxel and siRNA for cancer treatment. This nanocarrier possesses a unique hollow core/shell structure in which siRNA is incorporated in the hydrophilic cavity and large quantities of paclitaxel are stored in the hydrophobic interlayer, while the outer PEG layer serves to prolong the circulation time. Further modification by tumor microenvironment-sensitive polypeptides (TMSP) significantly enhanced the cellular uptake, tumor penetration and tumor accumulation of the ADENS by a tumor microenvironment-triggered mechanism. TMSP-ADENS had prominent therapeutic effects at a relatively low drug dose both in vitro and in vivo. In A375 xenograft mice, TMSP-ADENS/siRNA/PTX showed the highest VEGF mRNA inhibition rate of 73% and suppressed tumor growth and relapse, while Taxol did not show an effect on tumor relapse. The anti-tumor and anti-angiogenic effects were further confirmed in an HT-1080 xenograft tumor model. Our findings, combined with the known biodegradability and tunable physicochemical properties of these polymers, suggest that this TMSP-ADENS can be a robust co-delivery system for cancer combination therapy in the future.


SCREENSHOT

RELATED PRODUCTS
Tumor microenvironment-sensitive peptides ((EGG) 4 -PVGLIG-r 9 -C) and cell penetration peptide (r 9 ) were synthesized via a standard Fmoc solid-phase peptide synthesis method by China Peptides Co., Ltd
CHAINING
https://www.nature.com/articles/s41427-018-0027-4

评论

此博客中的热门博文

The Catalytically Inactive Mutation of the Ubiquitin-Conjugating Enzyme CDC34 Affects its Stability and Cell Proliferation

Author:Xun Liu, Yang Zhang, Zhanhong Hu, Qian Li, Lu Yang,  Guoqiang Xu     《The Protein Journal》 ABSTRACTS The ubiquitin proteasome system (UPS) plays important roles in the regulation of protein stability, localization, and activity. A myriad of studies have focused on the functions of ubiquitin ligases E3s and deubiquitinating enzymes DUBs due to their specificity in the recognition of downstream substrates. However, the roles of the most ubiquitin-conjugating enzymes E2s are not completely understood except that they transport the activated ubiquitin and form E2–E3 protein complexes. Ubiquitin-conjugating enzyme CDC34 can promote the degradation of downstream targets through the UPS whereas its non-catalytic functions are still elusive. Here, we find that mutation of the catalytically active cysteine to serine (C93S) results in the reduced ubiquitination, increased stability, and attenuated degradation rate of CDC34. Through semi-quantitative proteom...

Identification and Inhibitory Mechanism of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Bovine Hemoglobin

Author:Ying Wang, Yiqun Jiang, Yongguang Yin, Jiyun Liu,  Long Ding, Jingbo Liu, Ting Zhang     《The Protein Journal》 ABSTRACTS Angiotensin I-converting enzyme (ACE, EC.3.4.15.1) inhibitory peptide is an efficacious therapy for hypertension. In this study, four dipeptides, TY, FD, FL and FG, were identified from the desalted fraction of bovine hemoglobin hydrolysate, obtained by in vitro simulated gastrointestinal digestion, via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The IC 50   value of TY and FL are 96.43?±?6.17 and 290.66?±?57.92  μM, respectively. The result of molecular docking indicated that TY occupied the ACE subsite S1 and S1′ with a lowest estimated binding energy of ?9.96  Kcal/mol, while FL occupied the subsite S5 with a lowest estimated binding energy of ?9.37  Kcal/mol. The subsite S1′ and S2′ are closer to the ACE active center (Zn 2+ ) than S5, and the lowest estimated binding energy of TY is lower ...

Preparation of an antimicrobial surface by direct assembly of antimicrobial peptide with its surface binding activity

Author:Junjian Chen, Yuchen Zhu, Yancheng Song, Lin Wang,  Jiezhao Zhan, Jingcai He, Jian Zheng, Chunting Zhong, Xuetao Shi, Sa Liu, Li Ren and Yingjun Wang     《Journal of Materials Chemistry B》 ABSTRACTS Antimicrobial peptides (AMPs) are a broad prospect for clinical application against bacterial infections of biomaterials. However, a bottleneck exists as there is a lack of simple technology to prepare AMPs on biomaterials with sufficient activity, as the activity of AMP is dependent on the correct orientation on the biomaterial. In the present study, based on the conventional AMP (Tet213: KRWWKWWRRC) and surface binding peptide (SKHKGGKHKGGKHKG), we designed an Anchor-AMP that could be directly assembled onto the surface of the biomaterial and also showed excellent antimicrobial activity. By characterizing the surface using a quartz crystal microbalance with dissipation (QCM-D), contact angle, atom force microscopy (AFM) and X-ray photoelectron spectr...