跳至主要内容

Neuroprotective effects of a novel peptide, FK18, under oxygen-glucose deprivation in SH-SY5Y cells and retinal ischemia in rats via the Akt pathway

    文献作者:Shuyu Xiong, Yupeng Xu, Mingming Ma, Haiyan Wang, Fang Wei, Qing Gu, Xun Xu   《Neurochemistry International》

    ABSTRACTS
    Ischemic neuronal injury is associated with several life- and vision-threatening diseases. Neuroprotection is essential in the treatment of these diseases. Here, we identified and characterized a novel peptide, FK18, from basic fibroblast growth factor (bFGF). We further assessed the neuroprotective effects of this peptide and its potential mechanisms using the in vitro oxygen–glucose deprivation (OGD) model in SH-SY5Y cells and the in vivo retinal ischemia-reperfusion (I/R) injury model to mimic ischemic neuronal injury. Our results suggested that FK18 significantly increased the viability of and attenuated the apoptosis of SH-SY5Y cells. It also markedly alleviated I/R-induced retinal neuronal apoptosis, damage to retinal ganglion cells (RGCs), and morphological and functional damage to the retina. Moreover, FK18 increased Akt phosphorylation under both normoxic and OGD conditions, attenuated mitochondrial translocation of the proapoptotic protein Bad, up-regulated the expression of Bcl-2/Bax, and inhibited the release of cytochrome c from the mitochondria into the cytoplasm. These results suggested that FK18 is a novel neuroprotective agent that may serve as a prototype for neuroprotective drug development.
    KEY WORDS
    Peptide; Neuronal ischemia; Neuroprotection; Akt.
    SCREENSHOT

    RELATED PRODUCTS
    FK18 and SCpep were synthesized by China Peptides Co., Ltd .
    CHAINING
    https://www.sciencedirect.com/science/article/pii/S0197018616303655

评论

此博客中的热门博文

The Catalytically Inactive Mutation of the Ubiquitin-Conjugating Enzyme CDC34 Affects its Stability and Cell Proliferation

Author:Xun Liu, Yang Zhang, Zhanhong Hu, Qian Li, Lu Yang,  Guoqiang Xu     《The Protein Journal》 ABSTRACTS The ubiquitin proteasome system (UPS) plays important roles in the regulation of protein stability, localization, and activity. A myriad of studies have focused on the functions of ubiquitin ligases E3s and deubiquitinating enzymes DUBs due to their specificity in the recognition of downstream substrates. However, the roles of the most ubiquitin-conjugating enzymes E2s are not completely understood except that they transport the activated ubiquitin and form E2–E3 protein complexes. Ubiquitin-conjugating enzyme CDC34 can promote the degradation of downstream targets through the UPS whereas its non-catalytic functions are still elusive. Here, we find that mutation of the catalytically active cysteine to serine (C93S) results in the reduced ubiquitination, increased stability, and attenuated degradation rate of CDC34. Through semi-quantitative proteom...

Identification and Inhibitory Mechanism of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Bovine Hemoglobin

Author:Ying Wang, Yiqun Jiang, Yongguang Yin, Jiyun Liu,  Long Ding, Jingbo Liu, Ting Zhang     《The Protein Journal》 ABSTRACTS Angiotensin I-converting enzyme (ACE, EC.3.4.15.1) inhibitory peptide is an efficacious therapy for hypertension. In this study, four dipeptides, TY, FD, FL and FG, were identified from the desalted fraction of bovine hemoglobin hydrolysate, obtained by in vitro simulated gastrointestinal digestion, via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The IC 50   value of TY and FL are 96.43?±?6.17 and 290.66?±?57.92  μM, respectively. The result of molecular docking indicated that TY occupied the ACE subsite S1 and S1′ with a lowest estimated binding energy of ?9.96  Kcal/mol, while FL occupied the subsite S5 with a lowest estimated binding energy of ?9.37  Kcal/mol. The subsite S1′ and S2′ are closer to the ACE active center (Zn 2+ ) than S5, and the lowest estimated binding energy of TY is lower ...

Preparation of an antimicrobial surface by direct assembly of antimicrobial peptide with its surface binding activity

Author:Junjian Chen, Yuchen Zhu, Yancheng Song, Lin Wang,  Jiezhao Zhan, Jingcai He, Jian Zheng, Chunting Zhong, Xuetao Shi, Sa Liu, Li Ren and Yingjun Wang     《Journal of Materials Chemistry B》 ABSTRACTS Antimicrobial peptides (AMPs) are a broad prospect for clinical application against bacterial infections of biomaterials. However, a bottleneck exists as there is a lack of simple technology to prepare AMPs on biomaterials with sufficient activity, as the activity of AMP is dependent on the correct orientation on the biomaterial. In the present study, based on the conventional AMP (Tet213: KRWWKWWRRC) and surface binding peptide (SKHKGGKHKGGKHKG), we designed an Anchor-AMP that could be directly assembled onto the surface of the biomaterial and also showed excellent antimicrobial activity. By characterizing the surface using a quartz crystal microbalance with dissipation (QCM-D), contact angle, atom force microscopy (AFM) and X-ray photoelectron spectr...